Технологические схемы очистки сточных вод
1-исходные сточные воды; 2-аэротенк; 3-вторичный отстойник; 4-сточные воды после отстойника; 5-возвратный раствор аэробного сбраживания; 6-аэробное сбраживание; 7-осадок после аэробного сбраживания.
1-исходные сточные воды; 2-аноксидный реактор; 3-аэротенк; 4-вторичный отстойник; 5-сточные воды после отстойника; 6-возвратный раствор аэробного сбраживания; 7-аэробное сбраживание; 8-осадок после аэробного сбраживания.
1-исходные сточные воды; 2-аэротенк; 3- возвратный раствор аэробного сбраживания; 4-вторичный отстойник; 5- аэробное сбраживание; 6-осадок после аэробного сбраживания; 7-альгакультура; 8-отстойник водорослей; 9-сточные воды после обработки; 10-биомасса водорослей.
1-исходные сточные воды; 2-первичный отстойник; 3-первичный осадок; 4-альгакультура; 5-отстойник водорослей; 6-биомасса водорослей; 7- возвратный раствор аэробного сбраживания; 8-аэротенк; 9-аэробное сбраживание; 10-вторичный отстойник; 11-сточные воды после отстойника; 12- осадок после аэробного сбраживания.
1- исходные сточные воды; 2-отстойник водорослей; 3-биомасса водорослей; 4-аэротенк; 5-альгакультура; 6- возвратный раствор аэробного сбраживания; 7-вторичный отстойник; 8-аэробное сбраживание; 9-сточные воды после отстойника; 10- осадок после аэробного сбраживания.
Базовая схема предусматривает процесс с активным илом и вторичное отстаивание. В этом случае предусмотрена нитрификация для перевода аммонийного азота в нитраты (время задержки твердой фазы составляет 18 сут.), при этом не предусматривается полное удаление азота в результате денитрификации. Избыточный активный ил стабилизируют аэробным сбраживанием, осветленный раствор возвращают в голову процесса.
Вторая схема рассматривается как традиционная схема удаления биогенов (далее «Базовая-У»), обычно используемая на очистных сооружениях небольшой мощности. Здесь перед аэротенком установлен аноксидный реактор с рециркуляцией иловой смеси для частичной денитрификации. Перед отстаиванием к иловой смеси добавляют алюминат для удаления фосфора.
В трех остальных схемах в процесс очистки сточных вод интегрирована культивация микроводорослей на различных этапах технологической схемы. К ним относятся:
- альгакультура в качестве третичной обработки сточных вод для удаления биогенов после процесса с активным илом (далее «третичная»);
- альгакультура в качестве вторичной обработки для удаления биогенов перед процессом с активным илом (далее «вторичная»);
- альгакультура для локальной обработки возвратного концентрированного по биогенам раствора после обезвоживания осадка аэробного сбраживания (далее «локальная») [14].
Все представленные схемы обеспечивают удаление азота и фосфора, что является преимуществом по отношению к традиционным схемам, (особенно, на очистных сооружениях небольшой мощности), где, в основном, практикуется удаление либо азота, либо фосфора. При этом новая технология обеспечивает удаление фосфора в процессе синтеза клеток. Установлено, что биогены в составе биомассы более биодоступны, чем после химического осаждения в традиционных схемах. Схемы вторичной обработки и обработки возвратного потока аэробного сбраживания повышают эффективность процесса с активным илом. В случае их использования происходит удаление органического углерода и аммония, что снижает их содержание в сточных водах, поступающих в процесс с активным илом. Это, в свою очередь, уменьшает расход кислорода для снижения БПК и нитрификации. Кроме этого, данные схемы позволяют осуществлять согласование параметров биологического и фототрофного процессов, тогда как при третичной обработке фототрофный процесс не связан технологическими потоками с вторичной обработкой (процесс с активным илом). Также отмечается возможность удаления тяжелых металлов в фототрофном процессе (наряду с биогенами), которые могут отрицательно влиять на состав микрофлоры в процессе с активным илом.
Наряду с потенциальными преимуществами в настоящее время существует ряд препятствий для практической реализации данных схем. Одним из основных является потребность в значительных земельных площадях. Поскольку для развития микроводорослей требуется солнечный свет, реакторы для фототрофного процесса должны иметь высоту не более 1 м (в сравнении с 4 м для биореактора). В этой связи повышается целесообразность использования схемы обработки возвратного потока. Также при встраивании фототрофного процесса в схемы очистных сооружений надо учитывать, что в процессе с активным илом для эффективного удаления органического углерода требуется азот и фосфор. Их недостаток ведет к развитию нитчатых бактерий и внеклеточных веществ, что значительно увеличивает иловый индекс и обуславливает плохое отстаивание.
Во всех случаях производительность очистных сооружений по сточным водам составляет 7570 м3/сут. В каждом сценарии рассматриваются опции обработки низкоконцентрированных, промежуточных и высококонцентрированных сточных вод на очистных сооружениях в г. Клемсон, шт. Южная Каролина, США, обслуживающих 6680 условных жителей [14].
Автор статьи: Кофман Владимир Яковлевич