Методы очистки воды
1. Дистилляция
Дистилляция может использоваться как для получения воды очищенной, так и для получения воды для инъекций. В последнем случае используют специальное оборудование — апирогенные аквадистилляторы (маркировка А).
Суть метода заключается в перегонке питьевой (или обессоленной) воды в аквадистилляторах различного типа и производительности.
В аквадистилляторе любой модели можно выделить 3 узла: испаритель, конденсатор и сборник. Кроме того, все дистилляторы оснащаются датчиками уровня.
Испаритель с исходной водой нагревают до температуры кипения. Пары воды поступают в конденсатор, где они скапливаются. Накопленный жидкий дистиллят поступает в сборник. Все нелетучие загрязнители, имеющиеся в исходной воде, остаются в аквадистилляторе.
По виду нагрева различают аквадистилляторы:
- газовые (ДГ, АГ),
- огневые с топкой (ДТ, АТ),
- электрические (ДЭ, АЭ).
По конструкционным особенностям различают аквадистилляторы периодического и непрерывного действия; с одно- и двухступенчатым испарителем; с водоподготовителем (ДЭВ, АЭВ и др.); с брызгоулавливающим устройством (ДЭ-25; АЭВС и др.) [1].
В соответствии с ГОСТ 20887-75 производительность аквадистилляторов отечественного производства 4 и 25 л/час. Апирогенные аквадистилляторы, подготавливающие воду для инъекций, могут иметь производительность 4 , 10, 25 и 60 л/час.
С точки зрения экономической целесообразности дистилляция является дорогим методом получения очищенной воды. Из 11 литров исходной питьевой воды получают 1 литр очищенной. Поэтому на сегодняшний день актуальны более перспективные и экономичные методы приготовления воды для фармацевтических целей.
2. Ионообменный способ
Ионообменные смолы — сетчатые полимеры различной структуры и степени сшивки, в которых имеются ковалентные связи с ионогенными группами. При диссоциации ионогенных групп в воде или растворе образуется ионная пара. Один ион этой пары фиксирован на полимере, а противоион подвижен в растворе и способен обмениваться на ионы одноименного заряда из раствора.
Ионный обмен происходит на ионообменных установках— конструктивно это колонки, заполненные ионообменными смолами.
Ионообменные смолы разделяются на катиониты и аниониты. Ионообменные катиониты способны обменивать свой водородный ион на катионы Мg²⁺, Ca²⁺ и другие. Ионообменные аниониты обменивают свой гидроксил-ион на анионы SO₄²⁻ , Cl⁻ и другие. Качество воды контролируется электропроводностью. Как только ионообменная смола выработает свой ресурс, электропроводность раствора возрастает.
Колоночные аппараты для ионного обмена могут быть как с раздельными, так и со смешанными слоями катионов и анионов.
Аппараты с раздельными слоями представляют собой две последовательно расположенные колонки, одна из которых заполнена катионитами, а вторая — анионитами. Аппараты со смешанными слоями представляют собой одну колонку, наполненную смесью ионообменных смол.
Исходная вода подается через колонки снизу вверх, просачивается сначала через слой катионита, затем анионита. Частицы ионообменных смол, попавшие в воду, отфильтровываются.
По форме ионообменные смолы могут быть в виде гранул, волокон, губчатых образований, жгутов или лент. В процессе использования ионообменные смолы перемещаются в сорбционную ванну, в промывочную ванну, в бак регенерации и на отмывку.
Ионообменная технология является классическим и достаточно экономичным методом обессоливания воды. Один килограмм смолы способен очистить не менее 1000 литров воды.
Недостатки метода ионного обмена:
- многие ионообменные смолы гидрофобны, что затрудняет процессы сорбции и десорбции;
- гранулированные ионообменные смолы в процессе использования в колонках слеживаются и требуют разрыхления, а от механического воздействия разрушается их структура;
- периодическая регенерация ионообменных смол — раствором хлористоводородной кислоты (для катионитов) или раствором гидроксида натрия (для анионитов), с последующей промывкой смол;
- длительно используемые ионообменные смолы могут стать питательным субстратом для размножения микроорганизмов, поэтому им требуется периодическая дезинфекция.
3. Метод обратного осмоса
Мембранные технологии очистки воды в последние годы приобретают все более широкое применение.
Явление осмоса — это переход через полупроницаемую мембрану растворителя из раствора с низкой концентрацией примесей в раствор с более высокой концентрацией. Растворитель словно бы стремится уравнять концентрации солей в обоих растворах.
Обратный осмос идет в направлении, противоположном прямому осмосу. Под действием повышенного давления растворитель переходит через полупроницаемую мембрану из раствора с солями в ту область, где находится чистый растворитель. Движущей силой обратного осмоса является разность давлений.
Метод обратного осмоса первоначально использовался для опреснения соленой морской воды. Как оказалось впоследствии, этим методом можно получать воду высокой степени очистки — обессоленную, очищенную от механических примесей и микробов.
Состав стандартной установки обратного осмоса:
- насос высокого давления;
- один или несколько пермиаторов;
- блок регулирования рабочего режима.
Центральная часть любой обратноосмотической установки – мембрана обратного осмоса. Как правило, мембрана представляет собой спирально свернутые слои из водоподающего слоя, полупроницаемой мембраны и водосборного слоя. Вода под давлением подается с торца цилиндрически свернутой мембраны. Очищенная вода (пермеат) просачивается через полимерную пленку, достигает водосборного слоя, откуда подается в центральную водосборную трубку. Концентрат после очистки скапливается на другой стороне мембраны и отводится в дренаж [2].
Материалом для обратноосмотической мембраны могут служить эфиры целлюлозы — ацетаты или полиэфиры — найлон.
Мембрана с диаметром пор 0,01 мкм полностью освобождает воду от растворимых солей, органических веществ, коллоидов и микробов.
Плюсы метода получения воды очищенной методом обратного осмоса:
- относительная простота метода;
- производительность метода не зависит от начального солесодержания исходной воды;
- широкий ассортимент полупроницаемых мембран для получения воды заданного качества;
- экономичность метода: из 10 литров исходной воды получают 7,5 литров воды очищенной;
- энергоэффективность: затраты энергии идут только на работу насоса, что в 10-16 раз меньше, чем при очистке воды дистилляцией.
Недостатки метода обратного осмоса:
- выбор обратноосмотической мембаны на основе характеристик исходной воды (солесодержания, pH, концентрации Cl);
- закупорка пор мембраны в процессе водоподготовки;
- необходимость периодического включения циклов обратной фильтрации для очистки пор.
4. Электродиализный метод
При этом методе растворимые соли удаляются из воды под действием электрического поля и с помощью частично проницаемых мембран.
Селективные ионообменные мембраны подразделяются на катиониты и аниониты. Катиониты проницаемы для катионов и имеют отрицательный заряд. Аниониты проницаемы для анионов, их заряд — положительный.
Очищаемая вода помещается в ёмкость, разделенную на три части селективными мембранами. Под действием постоянного электрического тока ионы из раствора начинают притягиваться к мембране, имеющей противоположный заряд.
Ионообменные селективные мембраны не сорбируют ионы, а селективно пропускают их сквозь себя. Извлеченные из воды ионы концентрируются в соседних камерах, а в камере обессоливания остается очищенная вода. Остаточное содержание солей при этом методе водоподготовки составляет 5-20 мг/л.
Список источников
- Вода очищенная и для инъекций. Способы получения. Реферат. Самарский государственный университет. Кафедра фармацевтических технологий, 2010-2011 уч. г.
- Вода для инъекций. Методы получения. Требования GMP к получению и хранению воды для инъекций. ГОУ ВПО Санкт-Петербургская государственная химико-фармацевтическая академия. С-Пб, 2011.