Устранение жесткости воды
Существует несколько методов устранения жесткости воды, на практике наиболее часто применяется реагентное умягчение. В результате химической реакции между добавленными реагентами и присутствующими в воде ионами жесткости (Ca²⁺ и Mg²⁺) образуются нерастворимые соединения (осадки), которые легко удалить из раствора механическим способом. Для уменьшения общей жесткости воды применяют:
- кальцинированную соду — Na₂CO₃;
- гашеную известь — Са(ОН)₂;
- фосфат натрия — Na₃PO₄.
Процессы водоподготовки и умягчения воды реагентными методами и декарбонизацией известью ведутся в установках-осветлителях. В осветлителях создаются условия взвешенного осадка, а образование твердого осадка происходит по всему свободному объему раствора. Например, рост кристаллов CaCO₃ происходит из исходных частиц размером 0,01 мм.
Для того чтобы взвешенные в растворе карбонат кальция и карбонат магния быстрее выпали в осадок, дополнительно используют коагулянты — чаще всего это сульфат железа FeSO₄. Иногда применяют флокулянты (хлопьеобразователи).
Воду с высокой карбонатной жесткостью оптимально нейтрализовать известью совместно с сульфатом железа, в том случае, если не требуется дополнительно удалять ионы некарбонатной жесткости. Существенно снизить некарбонатную жесткость сможет добавление в воду щелочи NaOH с образованием соды (NaHCO₃).
Применение щелочи должно быть рассчитано исходя из соотношения
Формула:
- β
- показатель избыточной щелочности полученной воды, принимаемый в диапазоне 0-1,5 мг-экв/л
Едкий натр (NaOH) нельзя применять в осветлителях совместно с коагулянтами, так как он ухудшает показатели осаждения взвешенных частиц.
Дозы для реагентного умягчение воды известью и гидроксидом натрия вычисляют из соотношения
Формула:
Описанные методы реагентного умягчения воды находят применение для обработки природных вод из поверхностных водоемов. Положительные стороны метода декарбонизации состоят в том, что из воды дополнительно удаляются взвешенные вещества, органические примеси, железистые и кремниевые соединения.
Как правило, железо в природных водах представлено в виде комплексов, коллоидных систем и тонкодисперсных взвешенных частиц. В результате реакций декарбонизации образуются осадки солей железа и магния, а также карбонат кальция. Влажный осадок направляется на дальнейшую обработку — обезвоживание, складирование и утилизацию.
Один из методов удаления солей кальция из природных подземных вод заключается в реагентной обработке известью и едким натром в вихревом реакторе. В условиях гетерогенной системы кристаллизация осадка карбоната кальция происходит на поверхности загрузки, где быстрее образуются зародыши кристаллов. С точки зрения физики процесса образование кристаллов на поверхности энергетически более выгодно, чем кристаллизация по всему объему раствора.
В тех случаях, когда раствор насыщен карбонатом кальция, для оценки его водородного показателя применяют величину рНs. Этот показатель меняется в зависимости от:
- физико-химических параметров раствора — температуры,
- общей концентрации солей, а также
- заданных величин щелочности и жесткости обработанной воды.
Конструкционные особенности вихревых реакторов — небольшая занимая площадь при значительной высоте сооружения. Вихревые реакторы могут эксплуатироваться под давлением, поэтому умягчать воду можно без промежуточных резервуаров и дополнительных насосов. Система может работать даже при низкой температуре обрабатываемой воды. Осадок, получаемый в процессе реагентного устранения жесткости воды, представляет собой круглые гранулы размером 1–2 мм и влажностью 20–25%.