Мембранные методы очистки
В составе воды, как правило, присутствуют три основных аниона, сульфаты, хлорид-ионы и гидрокарбонаты. Превышение содержания сульфатов, как правило, всегда идет параллельно с повышением всех показателей солевого ее состава, в том числе и общей жесткости, паре Са + Mg, хлоридов, кремния. Поэтому при очистке воду следует частично обессоливать, иными словами провести коррекцию всех растворенных в воде солей.
Особенно это важно, если очищенные воды находятся в оборотном водоснабжении, тогда сульфаты будут являтся источником жестких сульфатных накипей.
В водоочистке при различной концентрации сульфатов и технологии производства могут применятся как обратный осмос, так и ионообменные смолы.
Метод обратного осмоса
Создаваемое давление гонит воду через полупроницаемые мембраны с порами 〜 10-7 см. Диаметр пор и их строение позволяют проникать через мембрану только молекулам определенных газов и воды. Загрязненная вода под высоким давлением, проникает через поры мембраны из сильно насыщенного в слабо насыщенный раствор и образует при этом два потока. В первом - чистая вода, а в другом - с задержанным на мембране осадком, который затем поступает в отстойник.
Обратноосмотические установки практически полностью очищают загрязненные воды от примесей. Кроме этого, они обладают еще рядом преимуществ:
- состав поступающей на очистку воды не влияет на качество очистки;
- отсутствие в техпроцессе химических реагентов превращает этот метод в безопасным в плане экологии;
- компактные размеры оборудования позволяют разместить его на небольшой площади;
- параллельно с освобождением от сульфатов, снижаются показатели жесткости воды, происходит удаление неприятных запахов, осветление и очищение от прочих химикатов;
- простота использования установки, безопасность и продолжительное время использования.
Недостатком обратноосмотического оборудования можно считать большие материальные затраты, но эффективность очистки компенсирует затраты на ее приобретение.
Метод ионного обмена
В данном методе используются ионообменные смолы сильного основания - аниониты. Они присоединяют анионы соединений, растворенных в воде, избирательно и имеют относительное родство по отношению к тем ионам, которые удаляются из раствора, по следующему ряду:
Ряд:
Основным условием протекания реакции обмена является расположение в этом ряду анионитов в растворе слева от анионов, которые находятся в смоле.
Сульфат кальция, как анион, замещается на гидроксил на положительно заряженной ионообменной смоле, а катион кальция замещается на водород на отрицательно заряженной катионообменной смоле.
Формула:
R₂ - SO₄ + Ca(OH)₂ = 2R-OH + CaSO₄ — регенерация аниона
Метод ионного обмена применяется для загрязненных вод с высоким содержанием сульфатов. Для регенерации смолы используются недорогие химические реагенты, такие как известь и серная кислота. Кроме того, этот способ используется в подготовке воды при производстве пива с легким, без горчинки, вкусом.
Тем не менее метод ионного обмена не лишен недостатков:
- Следует внимательно следить за процессом очистки из-за риска внезапного попадания сульфатов в очищенную воду, когда сульфаты, накопленные в смоле, вытесняются сульфат-анионами, поступающими из исходной воды.
- Необходимость жесткого контроля очищенной и исходной воды.
- Строгое нормирование сульфатов в технологическом процессе.
При выборе метода нужно руководствоваться оптимальным соотношением необходимых результатов и затрат.
Электродиализ
Метод включает в себя процесс выборочного переноса ионов под действием электрического тока через перегородки (мембраны), состоящих из ионитов. Как правило, используют группы чередующихся ионно- и катионообменных мембран. Сквозь ионообменные мембраны могут проникать только ионы имеющие тот же знак. Катионы движутся к катоду и проходят катионитовые мембраны, анионитовые мембраны их задерживают. Анионитовые мембраны, в свою очередь, пропускают ионы, которые движутся к аноду и останавливают катионы. В результате с помощью тока соли переносятся из положительных камер в отрицательные. В положительных камерах вода очищается, а в отрицательных накапливается осадок.
При реверсировании тока меняется полярность электродов (анод становится катодом и наоборот) и камеры опреснения и концентрации осадка меняются местами. Это позволяет удалять отложения, которые образовались в процессе электродиализа, что, в свою очередь, сводит к минимуму использование ингибиторов и уменьшает количество промывок.
Основными преимуществами метода электродиализа с реверсированием электрического тока можно считать:
- применение при любой температуре сточной воды и рН;
- уменьшение капитальных затрат за счет снижения рабочего давления;
- использование очищенной воды в оборотном водоснабжении;
- высокое качество очистки.
Недостатками электродиализа является дефицитность и высокая стоимость мембран и большая энергоемкость. Кроме того при неправильной эксплуатации может образовываться накипь сульфата калия.