Подбор насосов для КНС

Содержание
1. Классификация насосов по типам 2. Советы по подбору насосов 3. Подходы к расчету КНС и насосных агрегатов 4. Режимы работы насосной станции 5. Физические факторы, влияющие на работу насосов
Содержание
1. Классификация насосов по типам 2. Советы по подбору насосов 3. Подходы к расчету КНС и насосных агрегатов 4. Режимы работы насосной станции 5. Физические факторы, влияющие на работу насосов

Физические факторы, влияющие на работу насосов

Оптимальная и надежная работа насоса невозможна без учета таких факторов, как: кавитация, вибрация, осевые и радиальные нагрузки, объемные и локальные завихрения потока.

1. Кавитация

Наиболее важный физический фактор, учитываемый при проектировании насосных установок. Это гидравлические пустоты в потоке жидкости, которые возникают из-за местного понижения давления (или увеличения скорости потока). Когда кавитационный пузырек попадает в область повышенного давления, он лопается и высвобождает разрушающую энергию. Гидравлические удары вызывают вибрацию, которая воздействует на рабочее колесо насоса и вызывает износ составных механизмов (подшипников, валов, уплотнений).

Наибольший вред от кавитации проявляется, если при проектировании не были учтены законы гидравлики и гидродинамики.

У каждого насоса существует показатель Δhтр (NPSHR), определяющий величину кавитационного запаса. Это минимальное давление жидкости в насосе, при котором поток сохраняет однородность фазы.

Когда подача жидкости для насоса превышает точку максимального КПД, кривая Δhтр резко идет вверх. Зона справа от этой точки является опасной для появления кавитации в системе.

Насосы подбирают так, чтобы они располагались в зоне своей работы по кавитационному запасу. Необходимо выполнение следующего условия: ∆hдоп > ∆hтр. Где ∆hдоп ( NPSHA) ‒ потенциальная энергия жидкости у всасывающего отверстия насоса. ∆hдоп вычисляется по формуле:

Формула:

∆hдоп = Ha + Hs – Hvp – Hf – Hi
Ha
атмосферное давление (10 м водного столба на уровне моря)
Hs
статический напор (может быть отрицательным или положительным), является разностью уровней поверхности жидкости и осью насоса, м
Hvp
давление паров жидкости (зависит от температуры), м
Hf
потери на трение при всасывании, м
Hi
потери в пространстве между горловиной и головкой рабочего колеса насоса (в расчетах можно принять 0,6 м если не известно)

2. Завихрения

Водовороты в потоке возникают из-за неравномерностей скорости и направления тока жидкости. Их называют объемными завихрениями. Обычно наблюдается круговое завихрение потока вокруг насоса, которое усиливается в самом узком месте на входе в насос.

Направление вихря в водовороте может совпадать с направлением вращения рабочего колеса или быть ему противоположным. Завихрение потока на всосе насоса по направлению вращения рабочего колеса снижает КПД и теплоотдачу. Закручивание потока в противоположном направлении смещает рабочую точку насоса вправо и вверх относительно номинальной величины. Негативный эффект противоположных вихревых потоков проявляется в увеличении потребляемой мощности и снижении кавитационного эффекта насоса.

Вероятные признаки предварительного завихрения потока — шум, кавитация, быстрый износ подшипников и уплотнений.

Локальные завихрения еще более интенсивны, чем объемные, и ведут к образованию воронок. Они вызывают гидравлические удары, изнашивают движущиеся механизмы насоса, усиливают вибрацию и кавитацию, захватывают воздух и уменьшают величину подачи потока.

3. Вибрация

Возникновение вибрации при работе насосного оборудования обусловлено механическими колебаниями во вращающихся деталях насосов, перепадами давления жидкости, радиальными гидродинамическими силами в потоке.

Другие причины вибрации — засоры в насосе, неоптимальный режим работы насоса (за пределами диапазона кривой Q‒H), большая кавитация, высокое воздухосодержание в потоке жидкости, неисправность в рабочем колесе.

Наибольшим нагрузкам из-за вибрации подвергаются те узлы насосов, в которых поток жидкости создает разнонаправленные силы. Явление кавитации всегда увеличивает вибрацию, как следствие — растет шум и увеличивается износ механизмов.

Если величины Q и H отклоняются от параметров, обеспечивающих оптимальный режим работы, возрастает уровень вибрации и ускоряется износ. Наиболее уязвимы в этом плане вращающиеся узлы и механизмы.

Для снижения влияния вибрации необходимо особо тщательно проводить балансировку рабочего колеса. Нормальные уровни вибрации:

  • при сухой работе менее 2 мм/с;
  • допустимый уровень вибрации труб — менее 10 мм/с.

4. Шумы

Уровень шума, создаваемый насосной станцией, обусловлен следующими факторами:

  • вибрация, идущая от насоса и трубопровода;
  • параметры тока жидкости в трубопроводе;
  • параметры потока жидкости при поступлении в приемный резервуар;
  • величина кавитации.

Измерение уровня шума от погружных насосов — сложная задача. Стоить заметить, что уровень шума, создаваемый насосными станциями, не является проблемой, требующей первоочередного решения. Если существуют строгие требования к шумовому загрязнению, сам трубопровод и насос сухой установки покрывают звукоизолирующим покрытием.

5. Осевые и радиальные нагрузки

Когда жидкость при перекачивании проходит через рабочее колесо насоса, в ней возникает осевое усилие, возникающее из-за разности давлений на сторонах всасывания и нагнетания жидкости.

Величина осевого усилия находится в зависимости от напора, типа и размера рабочего колеса. Чем выше напор насоса, тем больше будет осевое усилие. Для минимизации влияния осевого усилия применяют насосы двойного всасывания с симметричными подводами.

В центробежных насосах на осевое колесо дополнительно оказывают влияние радиальные нагрузки. Радиальная сила проявляется вследствие колебания давлений и несимметричности спирального отвода насоса. Возникновение радиальных нагрузок может быть из-за ассиметричного подвода жидкости или из-за неравномерных скоростей в рабочем колесе насоса.